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Geometric Duality via Rockafellar Duality

by

*Elmor L. Peterson

Abstract. A specialization of Rockafellar duality to (generalized )

geometric duality provides an efficient mechanism for extending to

the latter the theory previously developed for the former.
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I. Introduct.ion. There are at least five different formulations of

duality -- the original Fenchel formulation [3,8), the (generalized )
geometric programming formulation (l,1~,5], the Fenchel-Rockafellar

formulation (6,8], the ordinary Lagrangian formulation (10 ,2,8], and

the Rockafellar formulation [7,8,9]. Although each formulation has

its own advantages and disadvantages , each can also be viewed as a

special case of each of the other four .

The appropriate specializations have already been carried out in

[14 ,8,9], but only for a very limited geometric programming formulation .

Thus, this paper complements those references by specializing the Rocka-

fellar formulation to the most general geometric programming formula-

tion . ,

Section 2 presents a version of the Rockafellar formulation that

facilitates the specialization given in Section 3. This specializa-

tion does not require convexity assumptions and uses only elementary

real analysis.

2. Rockafellar duality . Suppose that g:C is a (proper) function g

with a nonempty (effective) domain C c E.~ , and assume that the inde-

pendent variable (d ,p) in C is the Cartesian product of a “decision”

(vector ) variable d and a “perturbation” (vector ) parameter p .

Consider the parameterized family G that consists of the follow- J
ing optimization problems A(p) .

- 2 -
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PR0BL~ 4 A (p) . Using the “feasible solution” set -
~~~

S(p) ~ [d~ (d ,p) E c) ,

calculate both the “problem infimum”

~
(p) = inf g(d ,p)

dES(p)

and the “optimal solution” set

S*(p) ~ [d E S(p)~g(d ,p) = p(p)) .

For a given perturbation p , prob lem A (p) is either “consistent”

or “inconsistent” , depending on whether the feasible solution set S(p)

is nonempty or empty . The (effective) domain of the infimum function ~

is the “feasible perturbation” set

P = [piproblem A (p) is consistent)

which is obviously identical to (p~ (d ,p) € C for at least one dl and

hence is not empty . Unlike the function g , the function ~ may

assume the value -
~~~ . However, for our purposes, it is not advan-

tageous to follow Rockafellar ’s custom of artificially defining g and

-p to be -s-~ outside their respective domains C and P .

I
fl

~ 
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Now, suppos e that g:C has a “conj uga te transf orm ” h:D ; that is,

suppose there is a function h with a nonempty domain

D = j(q,e)~ sup ( (q , d) + (e,p) 
- g(d , p ) ]  < -~-cx~

(d ,p)EC

and f unc tion val ues

h(q,e) ~ sup ((q,d) + (e,p) - g(d,p)] .
(d ,p)EC

The inner product (q,d) associates the “dual perturbation” param eter q

with the “primal decis ion ” var iable d , and the inner product (e,p)

associates the “d ual decision ” variable e with the “primal perturbation”

parame ter p

Consider the parameterized family ~1 that consists of the following

optimization problems B (q)

PROBL~ 1 B(q). Using the feasible solution Set

T(q) ~ [e~ (q,e) ED) ,

calculate both the problem infimum

~ (q)  ‘
~~
‘ inf h ( q , e)

E T ( q )

- 14 -
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and the optimal solution set

T*(q) ~ [e € T(q)~h (q,e) =

Needless to say, the domain of the infimum function ~ is the

feasible perturbation set

Q = [q~problem B ( q )  is consistent)

which is clearly not empty .

Due to the known symmetry [3, 8] of the conjugate t ransformation

on the class of all closed convex functions g:C (as well 85 the

obvious symmetry of the preceding association of perturbation parame-

ters and decision variables), families U and 13 are termed Rocka-

fellar dual families, and prob lems A (O) and B(O) are termed Rocka-

fellar  dual problems. Ac tua l ly , Rockafel lar  [7,8,9] f o rmula tes 13

as a family of maximization problems by placing minus signs in front

of the sup and e in the definition of h:D . Althoug h that f o r mula-

tion fac i l i t a tes  specializations [7,8] to ( the  standard formulat ions o f )

linear programming dual i ty  and ordinary progr amming d u a l i t y,  the pre-

ceding formulation will  f ac i l i t a t e  our special izat ion to geometric pro-

gramming dua l i ty .

To (re)orient the reader toward the preceding formulation , we now

summarize Rockafe l l a r ’s main results  in terms of that  formulat ion . In

particu lar , the prima l inf imum func t ion  p is finite everywhere on its

domain P and has a conj ugate t r ans fo rm (with a nonempty domain and

— 5 -
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finite function values) if and only if the dual prob lem B ( O )  is con-

aistent; In which case

(i) the dual objective function h(O, ):T(O) is the conjugate

transform of cp:P ,

(ii) the dual infiinum ~v (O) 
is finit: if and only if 0 is in

the domain P of the closed convex hull p :P of ~p : P  , in which

event

= 
c
(s) + *(o) d ~~c(0) = T*(O)

(iii) if the primal problem A(O) is also consistent, then 0

is in the domain P~ d

cpC(O) � p (O) , with equality only if ~~~C
(0) = ~~‘(O)

(iv) given that g:C is convex and closed~ p is convex on P

and can differ from ~c only at relative boundary points of P

It is important to note that the preceding results involve the

whole Rockafellar family ~ but only one prob lem from the whole Rocka-

fellar dual family 43 -- the Rockafellar dual problem B(0) .

3. Geometric duality . Using the notation given in section 2.2 and

subsection 3.3.5 of (5], assume that

d = (x,K) and p = (u ,~~)

- 6 -  
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and suppose that

C ~ ((x ,K,u,~~)Ix
k
+u
k 

E Ck, kE[O)UI; ~~~~~~~~~~~~~ IE J;

xEX; and g1(x
1

-s-u~ )+~i~~~0,iEI)

and
I-

g(x,K ,u,~~) ~ G(x+u,t )  ~ g0
(x
0-s-u0) + ~~~~~ g~ (x~+u~,K~) .

Then, the Rockafel lar  fami ly  U is the “geometric programming

family” F (described in subsection 3.3.5 of [5]); and the crucial

question now is whether the Rockafellar dual family 13 is the “geo-

metric programming dual family ” G (described in subsections 3.3.14 and

3.3.5 of (5]). To obtain the answer, we need to compute the conjugate

transform h:D of g:C in terms of both the “dual” Y of the given

cone X and the conjugate transforms h.K :Dk 
of the given functions

g~~:C~~,k E [0 )U I L L J

To compute h:D , assume that

A
q = (v ,v) and e = (z ,X) ,

where v has the same component partitioning as x , and where z has 

-- ~~-~-.- ~---.- ~~ 
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the same component partitioning as u . Then

0 0  i i  I ih(v,’~,z,X) = sup [(v ,x ) + (v ,x )+ (v ,x )+ Vj
K

(x,K,u,~~)

+ (z
0
,u
0
)+E (z

i
,u
i
)+ ~~ (zi,ui)+~~~~x~~j.g0(x

O
+u

O
)

- ~~ g~ (x i+ui ,K 4)~x
O
+u

O 
E C0

;xi+ui E C~ ,i E I;(x~+u~,K )EC~ ,j E ~j J  -J j j

xEX; and gj(x
t
+ui) + � 0, iEI),

which is clearly finite only if � 0, i E I ; in which case

h(v,’u,z,X) = - sup
(x ,K,u)

i i  i i  i i
,x )+(z ,u )-X i

gj(x +u )]
I

or 

xO+uO ECQ ;x
i
+u

i
ECj,iEI; (x

i+ui,Kj
)Ec~,jEJ;xEx)

0 0 0 0  0 0h(v,’~,z,X) = sup [[(z +v ,x +u ~ -g
0(x -+-u )]

(x,K,u)

÷E [(z~-+-v
1
,x
1
+u

t
) - ~jgj(~~~~

i )]

+ E (z~÷v~,
x
~÷u~) +~~ j

K
j  

- g(x~+u~ ,K1
)]

- (z,x)
_ (v ,u)Ix

O
÷u

O
EC0;x

i
÷u

i
EC j,i EI;

(x~+u~~K~ )EC ,iEJ;xEx1

- 8 -

_ _  _  _ ~~~~~~~~~



-
~~ 

-=
~~~~~

—
~~~~~~~

----—
~
—- iis ~ ;—

‘-——-— ---- ~~~... ~~~~~~~~~- -~~--- — -- - - —-- _ _ _ _

The following lemma provides another condition that is necessary

for the finiteness of the preceding expression .

Lemma A . The preceding expression for h(v ,~~,z,X) is finite only if

-4 z - v E Y

Proof . If z-v ~~y , then there is an x€ X such that ~z-v ,x~ <0

in which event we choose so that: ~
0EC0; ~~~~~~ iEI; and

(c~~K~ ) EC , j EJ , for some fixed g � 0 . Letting x (s) ~ ax and

u(s) ~ c - ax , we observe that (x(s),K,u(s)) satisfies the restric-

tions on (x,K,u) for each a � 0 . Thus

- g
0(~

0
)1 + E[(z

i
+v

i
,c
i
) -

+ E[(z~÷v 1,c~~ 
+ \)

jKj 
- g~~(c~~,K~~)J  - (z ,s ) - (v ,c-sx\)

� h ( v ,.~i ,z ,X)

for each s � 0

and hence h (v ,’~,z,X) = +~~ because

litn [-(z ,sx~ — (V , C- S X~~) = u r n  [-(v ,c) + s(v—z,~ )) = +~

by virtue of the property (z-v ,x) < 0 . q.e.d.

Now , if z-vEY , then z=y+v for some yEY ; in which case

- 9 -

_ _  ~~~~~~~~ ------ ~~~-~~~~~-~~~



-
~: :~~~~

•
~~~~~-~~~~~ 

— ----
~:-~~~

--
~~~~

----‘--
~
— —---- —~~ ---~— -~ — - 

____ 

~~~~~~
=—

~~~~~~~~~

_ -

0 0 0 0  0 0
h(v,v,z,X) = sup [[~(z i-v ,x +u 

- g
0
(x +u )]

(x,K ,u)

i i i I i i I-
,

+ [(z +v ,x i-u ~ 
- X1g~ (x i-u )]

I

+ E((z~+v~ ,
x
~
+u
~) + -

J

0 0  I i
- (y,x) - (v ,x+u) ~ x i-u EC

0; x -s- u ~~~~ i~~ I

J E J  ; x~~~

Since 0 ~ (y,x) for each xEX , It is easily seen that

h(v,’~,z,X) = sup [[(z i-v ,u ) - g
0
(u )]

(K , u)

i i i  i
+ E[(z i-v ,u - X1

g1(u ) 1
I -

i i i  + j
+ [( z  +v ,u ‘ + V jK 1 

— g 4 (u ,K 1 )]  — (v ,u)~
-‘ -‘

I
u0EC0

; u
1
EC~ 1 i E I ;  (u~~K~ ) E C ~~ j E J )

0 0  0 i i  i
= [ 0

sup [ (z  ,u ) - g 0 (u )] i- L 1
sup [(z ,u 

~
-X

~
g1(u )]

u EC0 
I u EC i

+ sup 
÷

[ ( z i ,ui)+vjKj
_ g ( ui ,Kj)]) .J (u ~K~ )ECJ

Consequently, (v,’u,z,X)ED if and only if: X~ �O~ iEI; z=y+v for

some yEY; and each term on the right-hand side of the preceding equations

is finite . Of course, the first term is finite if and only if z
0
ED0 , 

in

which case the first term is equal to h
0
(z°) . The finiteness of the

- 1 0-  
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remaining terms can be conveniently characterized with two lemmas

The following lemma characterizes the finiteness of the terms

involving the index set I.

Lemma B. Given that � 0 , ~~~~ ~up [(z
1
,u
i) - X g ( u

i
)] is finite if

ULEC i
and only if (z ,Xi)ED~ 

, in which case

i i  i
sup [(z ,u ) — X~gj(u )]  = h1(z 1x~)

E C1

Proof . Simply observe that

sup (z
1
,u~) if 0

ui E C1

sup ((z
1
,u
1) - X1g1(u

1
)J = X1

h
1
(z
1
/X 1) 

If  
~i 
> 0 and E X1

D1

u EC i

+ ~ if  0 and zi 0 ~~~~ L

and then use the defining formula for h~ :D~ . q.e.d.

The next lemma characterizes the finiteness of the terms involving

the index set J .

• Letmna C. The sup ((z1,u~) + ~~ K - gi-(u 1
1K )] is finite if and

only if both Z~~ED~ 
and h~ (z~ ) + 

� 0 in which case

sup (~ z~ ,u~ ’ + - g~ (u~ ,K~ )1 = 0

(u~,K 1
) E C~ 

- -
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proof. First, observe that

sup ((z1,u1) + ‘~ K 
- g+(u~,~ )1

‘ 1  1

= sup (sup[(z1,u1) + -

K
J
�O U~

= sup (~ 1
K
1 
+ sup[(z1,u1> - g~ (u 1,K

1
) l ( u1,K

1
) E C~ ) ]

K
J~
O u

sup[(z1,u1) - sup (u1,d1)I sup (u~,d
1) < +a~) if K

1 
= 0

u~ d1ED
1 

d1ED
1

= sup

K
J~
O

— 
~~~~~~~~~~~~~ 

- K
1
g
1
(u1/K

1
)~u

1/K
1 
EC

J
) if K

1 
> 0 

—

- 

0 if K
1 

= 0 and z1 E 

-

+ if  K
1 

= 0 and a1 ~
BUp ‘~~K + ,

K�O 
+~~~ if I(

J
> O  and z

K
1
h
1
(z1) if K

1 
> 0 and a1 E

where the final step makes use o~. the fact that the zero function with

domain (the topological closure of D
1 

) is the conjugate trans-
‘~1

form of the conjugate transform of the zero function with domain D
1

Now, note that the last expression is finite only if a1 E D
1 
, in

which case the last expression clearly

= sup [‘~ K 4 + K h (z~ )]
K�0 ~ i i

-12 -
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But this expression is obviously finite if and only if h
1
(z1) + ~ 0 ,

in which case this expression is clearly zero . q.e.d.

We have now shown that

D = [(v,’~,
z,X)IX 1 

� 0, iEI; z=y+v for some yE?; z°ED
0;

(z
1
,X1) 

ED~ ,iEI; a
1 ED

1 
and h

1
(z1)+~1

�O,j €3)

and

h(v,v,z,X) = h0(z
0
) + Eh~(z

i
,x1)

I

Conseguently, the Rockafellar dual problem 8(0) is the “geometric

programming dual problem” B (described in subsection 3.3.14 of [5]).

Although the Rockafellar dual family 13 is slightly different from the

geometric programming dual family C (alluded to in subsection 3.3.5

of  [ 5 ] ) ,  the difference is incorisec~uential in view of the final para-

graph of section 2.

However , the relation z y+v shows that y can be used instead

of z as a dual decision variable -- a change of variables that clearly
induces a one-to-one mapp ing from 13 onto G . In particular , this

mapping simply translates the (domain of the) dual objective function

h (v ,’~i; .) through (-v ,0) -- a mapping that clearly leaves the problem

infimum ~j(v ,~~) invariant while translating the optimal solution set

• T (v ,u) through (—v ,O)

I-

— 1~ —

L

~ J
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